Änderungen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
Zeile 450: Zeile 450:  
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird genau einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
 
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird genau einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
 
# Die Polygone aus <math>C</math>  sind so orientiert, dass die Flächennormalen nicht ins Innere des Festkörpers zeigen, sondern nach außen.
 
# Die Polygone aus <math>C</math>  sind so orientiert, dass die Flächennormalen nicht ins Innere des Festkörpers zeigen, sondern nach außen.
# Die Polygone aus <math>C</math>  sind zusammenhängend, d.h. in dem dualen Graphen von  <math>C</math> gibt es einen Weg, der alle Knoten umfasst. Der duale Graph G<sub>C</sub> =(V<sub>C</sub>, E<sub>C</sub>)</math> von <math>C</math>  besteht aus einer Menge V<sub>C</sub> von Knoten und einer Menge E<sub>C</sub> von Kanten. Jeder Knoten v aus V<sub>C</sub> repräsentiert genau ein Polygon aus <math>C</math> . Eine Kante zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  wird in G<sub>C</sub> durch eine Kante <math>e=(v_{s_k},v_{s_l})</math> in E<sub>C</sub> dargestellt.
+
# Die Polygone aus <math>C</math>  sind zusammenhängend, d.h. in dem dualen Graphen von  <math>C</math> gibt es einen Weg, der alle Knoten umfasst. Der duale Graph <math>G<sub>C</sub> =(V<sub>C</sub>, E<sub>C</sub>)</math> von <math>C</math>  besteht aus einer Menge V<sub>C</sub> von Knoten und einer Menge E<sub>C</sub> von Kanten. Jeder Knoten v aus V<sub>C</sub> repräsentiert genau ein Polygon aus <math>C</math> . Eine Kante zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  wird in G<sub>C</sub> durch eine Kante <math>e=(v_{s_k},v_{s_l})</math> in E<sub>C</sub> dargestellt.
 
# Für jeden Punkt <math>P</math>, der in einem linearen Ring eines Polygons aus <math>C </math> vorkommt, gilt: Der Graph <math>G_P =(V_P, E_P)</math>, der aus Polygonen und Kanten gebildet wird, die <math>P</math> berühren, ist zusammenhängend. Dabei repräsentiert jeder Knoten <math>v</math> aus <math>V_P</math> genau ein Polygon, dessen linearer Ring <math>P</math> enthält. Zwei Knoten sind genau dann mit einer Kante <math>e</math> aus <math>E_P</math> verbunden, wenn die Polygone, die durch die Knoten repräsentiert werden, eine gemeinsame Kante haben, die <math>P</math> berührt .
 
# Für jeden Punkt <math>P</math>, der in einem linearen Ring eines Polygons aus <math>C </math> vorkommt, gilt: Der Graph <math>G_P =(V_P, E_P)</math>, der aus Polygonen und Kanten gebildet wird, die <math>P</math> berühren, ist zusammenhängend. Dabei repräsentiert jeder Knoten <math>v</math> aus <math>V_P</math> genau ein Polygon, dessen linearer Ring <math>P</math> enthält. Zwei Knoten sind genau dann mit einer Kante <math>e</math> aus <math>E_P</math> verbunden, wenn die Polygone, die durch die Knoten repräsentiert werden, eine gemeinsame Kante haben, die <math>P</math> berührt .
  
writer
31

Bearbeitungen

Navigationsmenü