Änderungen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
Zeile 440: Zeile 440:  
==gml:CompositeSurface==
 
==gml:CompositeSurface==
   −
Ein Solid modelliert einen beliebigen Festkörper. Die Oberfläche des Solid wird über eine Menge von Polygonen beschrieben, die bestimmte strukturgebende Eigenschaften erfüllen müssen.
+
Eine [http://www.schemacentral.com/sc/niem21/e-gml32_CompositeSurface.html '''CompositeSurface''']
Die Menge <math>C=\lbrace S_1,S_2,...,S_n \rbrace</math> von Polygonen beschreibt die Oberfläche eines Solid genau dann, wenn gilt:
+
ist eine Menge <math>C=\lbrace S_1,S_2,...,S_n \rbrace</math> von Polygonen, für die  
 +
folgendes gilt:
    
# Die Schnittmenge zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  ist entweder leer oder besteht nur aus Punkten und Kanten, die auch in den beiden linearen Ringen vorkommen. Bezeichne <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math>  den planaren linearen Ring, der das Polygon <math>S</math> definiert. Dann gilt:<br><math>S_i \cap S_k= \begin{cases}\emptyset\\ \lbrace Q_0,Q_1,...,Q_m\rbrace,Q_j=P_k^i\\ \lbrace e_0,e_1,...,e_m\rbrace,e_j=\overline{P_i^kP_{i+1}^k} \end{cases}</math>
 
# Die Schnittmenge zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  ist entweder leer oder besteht nur aus Punkten und Kanten, die auch in den beiden linearen Ringen vorkommen. Bezeichne <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math>  den planaren linearen Ring, der das Polygon <math>S</math> definiert. Dann gilt:<br><math>S_i \cap S_k= \begin{cases}\emptyset\\ \lbrace Q_0,Q_1,...,Q_m\rbrace,Q_j=P_k^i\\ \lbrace e_0,e_1,...,e_m\rbrace,e_j=\overline{P_i^kP_{i+1}^k} \end{cases}</math>
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird genau einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
+
# Jede Kante <math>e_k=\overline{P_i^kP_{i+1}^k}</math> eines linearen Rings <math>R_k=(P_0^k,P_1^k,...,P_n^k)</math> , der ein Polygon <math>S_k \in C</math>  definiert, wird höchstens  einmal als Kante <math>e_l=\overline{P_j^lP_{j+1}^l}</math>  in einem linearen Ring <math>R_l=(P_0^l,P_1^l,...,P_m^l)</math>  genutzt, der ein anderes Polygon <math>S_l \in C</math>  definiert.<br>Es gilt <math>P_i^k=P_{j+1}^l</math>  und <math>P_{i+1}=P_j^l</math>.
# Die Polygone aus <math>C</math> sind so orientiert, dass die Flächennormalen nicht ins Innere des Festkörpers zeigen, sondern nach außen.
+
# Die Polygone aus <math>C</math> sind so orientiert, dass die Flächennormale benachbarte Polygone in dieselbe Richtung zeigen.
 
# Die Polygone aus <math>C</math>  sind zusammenhängend, d.h. in dem dualen Graphen von  <math>C</math> gibt es einen Weg, der alle Knoten umfasst. Der duale Graph G<sub>C</sub> =(V<sub>C</sub>, E<sub>C</sub>) von <math>C</math>  besteht aus einer Menge V<sub>C</sub> von Knoten und einer Menge E<sub>C</sub> von Kanten. Jeder Knoten v aus V<sub>C</sub> repräsentiert genau ein Polygon aus <math>C</math> . Eine Kante zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  wird in G<sub>C</sub> durch eine Kante <math>e=(v_{s_k},v_{s_l})</math> in E<sub>C</sub> dargestellt.
 
# Die Polygone aus <math>C</math>  sind zusammenhängend, d.h. in dem dualen Graphen von  <math>C</math> gibt es einen Weg, der alle Knoten umfasst. Der duale Graph G<sub>C</sub> =(V<sub>C</sub>, E<sub>C</sub>) von <math>C</math>  besteht aus einer Menge V<sub>C</sub> von Knoten und einer Menge E<sub>C</sub> von Kanten. Jeder Knoten v aus V<sub>C</sub> repräsentiert genau ein Polygon aus <math>C</math> . Eine Kante zweier Polygone <math>S_k</math>  und <math>S_l</math>  aus <math>C</math>  wird in G<sub>C</sub> durch eine Kante <math>e=(v_{s_k},v_{s_l})</math> in E<sub>C</sub> dargestellt.
# Für jeden Punkt <math>P</math>, der in einem linearen Ring eines Polygons aus <math>C </math> vorkommt, gilt: Der Graph <math>G_P =(V_P, E_P)</math>, der aus Polygonen und Kanten gebildet wird, die <math>P</math> berühren, ist zusammenhängend. Dabei repräsentiert jeder Knoten <math>v</math> aus <math>V_P</math> genau ein Polygon, dessen linearer Ring <math>P</math> enthält. Zwei Knoten sind genau dann mit einer Kante <math>e</math> aus <math>E_P</math> verbunden, wenn die Polygone, die durch die Knoten repräsentiert werden, eine gemeinsame Kante haben, die <math>P</math> berührt .
      
Aus (1) und (2) ergibt sich, dass die Oberfläche, die durch  <math>C</math>  beschrieben wird, keine Löcher enthalten darf. Mit den weiteren Bedingungen (4) und (5) ergibt sich, dass das Innere des durch <math>C</math>  beschriebenen Festkörpers zusammenhängend sein muss.  
 
Aus (1) und (2) ergibt sich, dass die Oberfläche, die durch  <math>C</math>  beschrieben wird, keine Löcher enthalten darf. Mit den weiteren Bedingungen (4) und (5) ergibt sich, dass das Innere des durch <math>C</math>  beschriebenen Festkörpers zusammenhängend sein muss.  
<math>S</math> wird auch als geschlossene [http://www.schemacentral.com/sc/niem21/e-gml32_CompositeSurface.html '''CompositeSurface'''] bezeichnet.
  −
  −
  −
  −
  −
  −
      
== <span id="Solid"> [http://www.schemacentral.com/sc/niem21/e-gml32_Solid.html gml:Solid]</span>==
 
== <span id="Solid"> [http://www.schemacentral.com/sc/niem21/e-gml32_Solid.html gml:Solid]</span>==
writer
31

Bearbeitungen

Navigationsmenü